Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes.

نویسندگان

  • Ildikò Szabó
  • Jürgen Bock
  • Heike Grassmé
  • Matthias Soddemann
  • Barbara Wilker
  • Florian Lang
  • Mario Zoratti
  • Erich Gulbins
چکیده

The potassium channel Kv1.3 has recently been located to the inner mitochondrial membrane of lymphocytes. Here, we show that mouse and human cells either genetically deficient in Kv1.3 or transfected with siRNA to suppress Kv1.3-expression resisted apoptosis induced by several stimuli, including Bax over-expression [corrected]. Retransfection of either Kv1.3 or a mitochondrial-targeted Kv1.3 restored cell death . Bax interacted with and functionally inhibited mitochondrial Kv1.3. Incubation of isolated Kv1.3-positive mitochondria with recombinant Bax, t-Bid, or toxins that bind to and inhibit Kv1.3 successively triggered hyperpolarization, formation of reactive oxygen species, release of cytochrome c, and marked depolarization. Kv1.3-deficient mitochondria were resistant to Bax, t-Bid, and the toxins. Mutation of Bax at K128, which corresponds to a conserved lysine in Kv1.3-inhibiting toxins, abrogated its effects on both Kv1.3 and mitochondria. These findings suggest that Bax mediates cytochrome c release and mitochondrial depolarization in lymphocytes, at least in part, via its interaction with mitochondrial Kv1.3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of voltage-gated potassium channels to the regulation of apoptosis.

Recent evidence points to the crucial involvement of voltage-gated potassium channels (Kv) in apoptotic volume decrease and in the regulation of apoptosis in several systems. We have recently described the presence of a Kv channel, Kv1.3, in the mitochondria of lymphocytes. Expression of the channel correlated with increased sensitivity to apoptotic stimuli. Mitochondrial Kv1.3 contributes to t...

متن کامل

Inhibitors of mitochondrial Kv1.3 channels induce Bax/Bak-independent death of cancer cells

Overcoming the resistance of tumours to chemotherapy, often due to downregulation of Bax and Bak, represents a significant clinical challenge. It is therefore important to identify novel apoptosis inducers that bypass Bax and Bak. Potassium channels are emerging as oncological targets and a crucial role of mitochondrial Kv1.3 in apoptosis has been demonstrated. Here we report for the first time...

متن کامل

Biophysical characterization and expression analysis of Kv1.3 potassium channel in primary human leukemic B cells.

BACKGROUND/AIMS Pharmacological inhibition of the potassium channel Kv1.3 has been shown to selectively kill B cells from patients with chronic lymphocytic leukemia (B-CLL). Here we aimed to biophysically characterize and compare Kv1.3 channel activity in B cells isolated either from healthy subjects or patients and investigated the mechanism accounting for the increased protein expression in B...

متن کامل

Activation of the permeability transition pore by Bax via inhibition of the mitochondrial BK channel.

Mitochondria are crucially involved in the intrinsic pathway of apoptosis. Upon induction of apoptosis, proapoptotic proteins of the Bcl-2 family, in particular Bax and Bak, transfer the death signal to the organelle. The outcome is release of proapoptotic factors, such as cytochrome c, and mitochondrial changes, such as depolarization. Details of the mechanism by which Bax mediates mitochondri...

متن کامل

K(bg) and Kv1.3 channels mediate potassium efflux in the early phase of apoptosis in Jurkat T lymphocytes.

Microelectrode ion flux estimation (MIFE) and patch-clamp techniques were combined for noninvasive K(+) flux measurements and recording of activities of the dominant K(+) channels in the early phases of apoptosis in Jurkat cells. Staurosporine (STS, 1 microM) evoked rapid (peaking around 15 min) transient K(+) efflux, which then gradually decreased. This transient K(+) efflux occurred concurren...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 39  شماره 

صفحات  -

تاریخ انتشار 2008